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1. Phys. A. Math Gen. 28 (1995) 2227-2246. Rimed in the UK 

Covariant differential complexes on quantum linear 
groups* 

A P Isaevt and P N Pyatov$ 
Bogoliubov Laboralory of Theoretical Physics, Joint lnstitute for Nuclear Research. 141980 
Dubna. Moscow Region, Russia 

Received 28 November 1994, in final form 30 January 1995 

Abslrad We consider the possible mvarim extemd algebn SWCNrCs for Canan’s I-forms 
(52) on GL,(N) and SL,(N). Our starting point is that the R d u e  an adjoint representation 
of  quantum p u p  and all monomials of the R possess the unique ordering. For the extemal 
algebras oblained we define the differentid mapping d possessing the usual nilpotence mndition. 
and the gcncdly deformed version of the Leibnitz rules. The status of the known examples of 
GL,(N)-diffe~ntial calculi in the proposed classificaion scheme and the problems of SLq(N)- 
reduction .ue discussed. 

1. Introduction 

Since Woronowicz formulated the general scheme for constructing differential calculi on 
quantum matrix groups [ 11, the most publications on this theme have appealed more or less 
to it (see, for example, [3,5,9,10, 11,13,15,16]). This scheme has the following structure: 
the first-order differential calculus is defined in an axiomatic way and, once it is fixed, 
the higher-order differential calculus can be constructed uniquely. The underlying quantum 
group structure is taken into account by the bicovariance condition. 

The principal problem of Woronowicz’s approach that has already been mentioned in [l] 
but still remains unsolved is that the scheme possesses a variety of differential calculi for 
each quantum group, and there is no criterion to choose the most appropriate one. 

On the other hand, the R-matrix formalism (see [2] and references therein), initially 
motivated by the quantum inverse scattering method, appears to be an extremely useful 
tool in dealing with quantum groups and essentially with differential calculus on them. 
So, it is not surprising that some papers have appeared relating Woronowicz’s scheme and 
R-matrix formalism [?-SI. Based on the differential calculus on a quantum hyperplane 
and using the R-matrix formulation one may hope finally to construct the most natural 
differential calculus on a quantum group (see [6-9]). This program has been realized for 
the GL,(N)-case in [10-15], but being restricted to SL, (N) .  the calculus obtained reveals 
some unfavourable properties (see the discussion in section S), which forces us to search for 
other possibilities. Thus, the classification of differential calculi on linear quantum groups 
still remains an actual problem to date. 
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93- 127). 
t E-mail address: isaevap@thwr.jjinrc.dubna.su 
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In the present paper we make an attempt to approach this problem from an opposite 
direction, i.e. to construct the higher-order differential calculus first. Here, the key role is 
played by the conditions: 
(a) Cartan's 1-forms realize the adjoint representation of GL,(N); 
(b) all higher-order invariant forms, being polynomials of the Cartan's I-forms, can be 
ordered (say, lexicographically) uniquely. 

The paper is organised as follows: all the preliminary information and notation is 
collected in section 2. In section 3, developing the ideas of [14] we consider GL,(N)- 
covariant quantum algebras (CA). hang ing  them into two classes, the q-symmefrical (SCA) 
and q-anfisymmetrical (ACA) ones, we then concentrate on studying the homogeneous ACAS, 
that could be interpreted as the extemal algebras of Cartan's 1-forms. We find four one- 
parametric families of such algebras. Section 4 is devoted to the construction of differential 
complexes on the homogeneous ACAS. In doing so we admit the deformation of the Leibnitz 
rule and, thus, extend the class of the permitted complexes. We conclude the paper by 
considering how the known GL,(N)-differential calculi are incorporated into this scheme 
and by discussing the problems of the SL,(N)-reduction. 

2. Notation 

We consider the Hopf algebra Fun(GLq(N)) generated by elements of the N x N matrix 
T = IlFjll, i, j = 1, . . . , N obeying the following relations [Z]: 

Here T = TI = T Q I ,  T' s TZ = I Q T, I is N 8 N identity matrix, R = 812 = PrzR12. 
Plz is the permutation matrix and Rn is the GL, (N)  R-matrix [18,2] satisfying the Yang- 
Baxter equation and Hecke condition, respectively, 

R l T ' = l T ' R .  (21) 

RR'R = R'RR' (2.2) 
R~ - A R  + I = o (2.3) 

where h = q -q-', R' = 8~ = PzsRz and 1 is the N2 x N2 identity matrix. In accordance 
with (2.3), for q2 # - 1  the matrix R decomposes as 

where the projectors P- and P+ are quantum analogues of the antisymmetrizer and 
symmetrizer, respectively. 

The comultiplication for the algebra Fun(GL,(N)) is defined as ATj  = Fik Q Gj. 
To construct the antipodal mapping on Fun(GL,(N)) ,  we add one more generator 
(de$ T)-l to the initial set { T j }  (see [Z]). The antipode S(T) obeys the conditions 
S(zj)T, i  = TjjS(Tj1) =&!I, so in what follows we use the notation T-I instead of S(T). 

3. GL,(N)-covariant quantum algebras 

Consider the N2-dimensional adjoint Fun(GL,(N))-comodule A. We arrange its basic 
elements into the N x N matrix A = IIAijll, i, j = 1, . , . , N. The adjoint coaction is 

r ,  

(3.1) A, I + Ti';S(T); 0 A )  (TAT-'); 

where the last part of equation (3.1) is the standard notation to be used below. 
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The comodule A is reducible, and the irreducible subspaces in A can be extracted by 
using the so called quantum trace (4-trace) [2,191 (see also [5,13,201). In the case of 
Fun(GL,(N))  it has the form 

N 

Trq A = Tr('DA) E x q - N - ' + 2 i A j  'D 5 diag(q-N+', q - N t 3 , .  . . ,qN- ' }  (3.2) 
i=l 

and possesses the following invariance property: 
Tr,(TAT-') = Tr,(A) 

i.e. Tr,(A) is a scalar part of the comodule A, while the q-traceless part of A forms the 
basis of ( N 2  - 1)-dimensional irreducible Fun(GL,(N))-adjoint comodule. Let us also 
note the following helpful formulae: 

Trq(2)(RAR-') = Tr,p)(R-'AR) = Tr, A I,,)  

 TI^(^) R* = q*' Tr, I = [ N I ,  
where A A ]  = A 8 I ,  [NI9 = (qN - q - N ) / ( q  - q-'), and by X ( i )  we denote quantities 
(operators) X living (acting) in the ith space. 

Consider now the associative unital @-algebra @(Aij)  freely generated by the basic 
elements of A. As a vector space, @(Ai]) naturally carries the Fun(GL,(N))-comodule 
structure. Now we introduce GL,(N)-  covariant quantum algebra (CA) as the factoralgebra 
of @(Ai ] ) ,  possessing the following properties [ 141: 

(A) The multiplication in this algebra is defined by a set {or) of polynomial identities 
quadratic in Aij 

C&!AijAkr CGAij + Ce.  (3.3) 
In other words, CA is the factor algebra of @ ( A i j )  by the bi-ideal generated by (3.3). 
(B) Considered as a vector space CA is a GL,(N)-adjoint comodule, so the coefficients 
CGkl in (3.3) are q-analogues of the Clebsch-Gordan coefficients coupling two adjoint 
representations, and the set of the relations (3.3) is divided into several subsets corresponding 
to different irreducible Fun(GL,(N))-comodules in A 8 A. Parameters C$ are not equal 
to zero when CGk, couple A 0 A into the adjoint GL,(N)-comodule again, while C@ # 0 
only if C;k,AijAk( are scalars. 
(C) All the monomials in CA can be ordered lexicographically due to (3.3). 
(D) All the non-vanishing ordered monomials in CA are linearly independent and form a 
basis in CA. 

Now we recall that for the classical case (q = 1) the dimensions of the irreducible 
Fun(GL(N))-subcomodules in A 8 A are given by the Weyl formula [21] 

d i m A 8 A = [ ( N 2 - 1 ) + 1 ] 2 = 2 ~ [ 1 ] 8 ( 3 + B N . 2 ) . [ N Z -  1]82e,v,2 

(3.4) 

where 0 N . M  = (1 for N > M: 0 for N < M). Thus, A 8 A splits into 2 scalar 
subcomodules, 4 (3 for N = 2) adjoint (traceless) subcomodules and 4 (1 for N = 2 
and 3 for N = 3) higher-dimensional mutually ineqnivalent subcomodules. According to 
the results of [22], in the quantum case the situation is generally not changed (the exception 
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is when q is a root of unity). Below we employ the q-(anti)symmetrization projectors Pi 
and q-trace to extract the irreducible subcomodules in A 0 d, thus, supposing from the 
beginning that q # -1  and Trq I = [NIq + 0. 

First, we shall obtain the sets of combinations quadratic in Ai, that correspond to 
the 1.h.s. of (3.3) and contain four higherdimensional Fun(GL,(N))-subcomodules (see 
equation (3.4)). Let us start with the N Z  x N 2  matrix ARA containing all the N 4  independent 
combinations quadratic in Ai j  and having the convenient comodule transformation properties 

From equations (2.1). (2.4) it follows that P*lT' ="Pi, hence we can split ARA into 
four independently transforming (for N 2 3 )  parts 

X** E P*ARAP* Xii = P*ARAP' . (3.6) 
Namely the q-traceless (in both first and second spaces) parts of X*, X-- and Xi' are 
the four higher-dimensional subcomodules in A@A with dimensions: $ N 2 ( N  + 3 ) ( N  - I), 
$ N 2 ( N  - 3 ) ( N  + 1) and $ ( N 2  - 1)(N2 - 41, respectively. 

Now acting on the X by the Trq operation we obtain (for N # 2 and q not being a root 
of unity) four independent combinations transforming as adjoints 

A P lsaev and P N Pptov.  

ARA + (TT')ARA(lT)-' . (3.5) 

A2 Crr, A)A A(Tr, A) A * A Trq,(R-'ARAR-]) . (3.7) 
The q-traceless parts of these combinations correspond to the irreducible adjoint 
subcomodules in A 0 A. Applying TI, to equations (3 .7)  once again we arrive at two 
independent expressions, namely 

(nq A)' n q ( A 2 )  (3.8) 
corresponding to the scalar subcomodules. We refer to expressions (3.6), (3 .7)  and (3 .8)  as 
higher-dimensional, adjoint and scalar terms respectively. 

As was argued in [14], to satisfy condition (C) for CA, the 1.h.s. of the relations (3 .3)  
must contain independently either X++ with X--, or X+- with X-+. One can combine 
these pairs into single expressions 

(q + q-')(X++ - X--) = RARA + ARAR-' (3.9) 
(q + q-])(X-+ - X+-) = RARA - ARAR . (3 .10)  

The way of combining the quantities (3.6) is not important. We choose the concise forms 
(3.9), (3.10) because in the classical limit they are simply the anticommutator [A*, AI]+ 
and commutator [A?, AI]-. So it is natural to call equations (3.9) and (3.10) the q- 
anticommutator and q-commutator, respectively. In view of this, all the CAS with the 
defining relation (3.3) are classified into two types depending on whether their defining 
relations contain the q-anticommutator or q-commutator. The former will be called 
antisymmetric CA (ACA) and the latter symmetric CA (SCA). 

At the moment we still fix the higher-dimensional terms in a quadratic part of the 
relations (3 .3) ,  but there remains an uncertainty in the choice of the adjoint and scalar terms. 
Let us show this explicitly. First of all we emptoy simple dimensional considerations. To 
satisfy the ordering condition (C) at a quadratic level, we must include at least i N 2 ( N 2  - I )  
independent relations into (3.3) (e.g. for the classical case of g l ( N )  this corresponds to 
the number of commutators [Aij, A d ) .  Since the higher-dimensional terms (3 .10)  for 
SCA contain i ( N 2  - 1)(N2 - 4) independent combinations, we must add to them at least 
2 .  ( N 2  - 1) independent combinations, i.e. two q-traceless adjoint terms. Actually, the 
estimation is precise: including any other additional adjoint or scalar terms into (3.3) would 
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result in a linear dependence of quadratic ordered monomials and, thus, would contradict 
(D). As regards the ACAS, from the i N 2 ( N 2  - 3) independent combinations, contained in 
higher-dimensional terms (3.9), the N 2  combinations lead to the relations (3.3) of the type 
A$ = 0 (i # j ) ,  AY, = Xk,JkfAk~Aik (where Jk' are some constants), i.e. they are 
useless in the ordering procedure. Hence we have a deficit of 2N2 independent quadratic 
combinations in the N > 3 case (5 combinations for N = 2) and are forced to include in 
(3.3) 2(1 for N = 2) independent q-traceless adjoint terms and a pair of scalar terms. With 
this inclusion the ACAS are defined by the set of i N 2 ( N 2  + 1) relations. 

Thus, we have determined the number of independent adjoint and scalar terms in 
syhtnetric and antisymmetric CAS. Note that the q-commutator and q-anticommutator 
themselves contain the true number of adjoints and scalars, which is demonstrated by the 
following symmetry properties: 

P*(RARA - ARAR)P* = o 
P*(RARA + ARAR-')Pr = 0. 

(3.1 1) 

(3.12) 

But there is a possibility of changing the form ofthe quadratic adjoint terms on the 1.h.s. of 
(3.3) without changing their number. Indeed, consider the quantities 

(3.13) A*(u&(A)) = RU,(A)R*' f U ~ A )  

U&(A) = u'(R). A' + (U' - e)(R). (TI, A)A 

+(u3 - e)@) A(Tr, A) + u'(R). (A *A) (3.14) 

where un(R) = + u;R, a = 1,2,3,4, and e(R) = &(ul(R) + q - N ~ 4 ( R )  - 1). We 
make the e(R)-shifi of the parameters u2(R) and u3(R) for the sake of future convenience. 
The expressions A* are the most general covariant combinations which contain only adjoint 
and scalar (for A+) terms and satisfy the symmehy properties 

P*A-P* = P * A + P ~  = 0. (3.15) 

Therefore we may use A+ and A- in varying the quadratic part of the defining relations 
(3.3) for the ACAS and SCAS, respectively. Note that in principle one could add to the 
r.h.s. of (3.14) the scalar combination U,, = h(R)Tr,(A2) + g(R)(Tr, A)z, where h and 
g are arbitrary functions of R. This addition, obviously, does not affect A-. As concerns 
A+, remember that defining relations for ACA must contain a pair of independent quadratic 
scalars represented generally as 

Trq(A2) = CI Tr,(A) + CZ (Tr, A)' = C3 Tr,(A) + C4 . (3.16) 

Here Ci are some constants. Thus, even changing the form of A+, the term Use cannot 
change the content of the bilinear part of the defining relations for ACA and we will omit 
thii term hereafter. 

Now we shall concentrate on studying the homogeneous (pure quadratic) ACAS, which 
possess the natural Zz-grading and may be interpreted as external algebras of the invariant 
forms on GL, (N) .  To emphasize this step, we change the notation from A to S2. All the 
other cases can be considered along the same lines. 

As we have shown, the general defining relations for homogeneous ACA look like 

RQRQ + QRS2K' = A+ . (3.17) 
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These relations contain 8 random parameters U;, (a = 1,2 ,3 ,4;  i = 1, 2), but actually this 
parametrization of the whole variety of homogeneous ACAS is redundant. To minimize the 
number of parameters in (3.17). let us pass to the new set of generators 

A P Isaev and P N Pyatov 

w = Trq Q 

D=D--Z Trq d = 0 
w 

[NI, 
(3.18) 

Using these new variables one can extract the first scalar relation w2 = 0 and (3.17) is 
changed slightly to 

~ h ~ h  + A R ~ F I - ~  = A+(u(~)) (3.19) 

0 2  = 0 (3.20) 

where A+(U)  = RUR + U and 

U(d) = ul(R)hz + uZ(R)wh + u3(R)hw + u4(R)(d * d) . (3.21) 

Applying the operations Tr,(z,[...], Tr,(z)[R-' ...I, and then Tr,(l)[. . .] to (3.19), we 

(3.22) 

Here, as usual, fl= d~ = h c3 I. 

extract adjoint relations and then obtain the second scalar relation 

Tr,(d*) = q-N TI,@ * d) = 0 

The adjoint relations are represented in the form 

u'(R)$ + u2(R)wh + u3(R)&w+ u4(R)(d * d) = 0 (3.23) 

where 

U"@) = UY + u;R = x(R)u"(R) - Sa,lqNR2 - So,41 , 

x(R)  = xo + XIR = (qN + q-N)  f ([NI, + AqN)R . 
(3.24) 

(3.25) 

Here we arrange the pair of adjoints into a single ma@ix relation. Expanding (3.23) in a 
power series of R one can obtain both the adjoint relations explicitly. 

Now we can reduce the number of coefficients parametrizing the ACAS. Namely, we 
use equations (3.23) to represent some pair of adjoint terms (3.7) as Linear combinations of 
the other two adjoints. Let us denote 2 x 2 minors of the system (3.23) as 

(3.26) 

Note, if y'4 = yZ4 = 0, then we get from (3.23) that d2 must be proportional to either 
wd, or 60, which contradicts the condition @). Hence, there are only two variants of 
solving (3.23) with respect to either d * d and f i w  (if y34 # 0). or fi * d and wh (if 
yW # 0). Both the choices are quite natural since, first, we eliminate the cumbersome 
expression d * d from further considerations and, second, we fix the order of quantities 
w and d in their monomials (turning w, respectively, to the left, or to the right). In fact, 
as we shall see further (see remark 3 to theorem l), both these variants are equivalent and 
conditions y34 # 0, yU # 0 are necessary in obtaining consistent ACAS. So, we suppose 
from the beginning that both y34 and yW are not equal to zero, and choose solving (3.23) 
w.r.t d * d and fiw. The result is 

6 * d = 662 + r w h  d w  = -pwh+ x 2 2  (3.27) 
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where 

Y" Y l4 p = - + o  U = - -  
Y l 3  

Y 34 Y 34 Y 34 Y 34 

Y 23 z=--  6 = -  

are that minimal set of  parameters for which we are searching. In this parametrization the 
defining relations for ACA look like 

RfiRh + ARfiR-' = ?(R) { (6 + qNR2)(Rfi2R + A') + TU(RAR + fi),) (3.28) 

no = -poh + UhZ (3.29) 

o z = o  (3.30) 

- 

where 
1 

i (R)  (x(R)]-' = I-xz + xiRt 
[ N  + 21JN - 21, (3.31) 

XZ = xo + Ax1 = q N ( q - 2  + 4 2 )  . 
To get relations (3.28) we solve (3.24) with respect to U'@), substitute the resulting 
expressions into (3.21), (3.19), and then use (3.23) and the first of equations (3.27). The 
systems of relations (3.28)43.30) and (3.19)-(3.21) are eqiuvalent if the matrix x(R) is 
invertible, i.e. if [ N  + 2],[N - 21, # 0 + [NI, # 2321, + q2N*4 # 1 (compare 
with the remark in the brackets above (3.7)). Further we shall consider this non-singular 
case. The case N = 2 will be treated in detail in the section 4. 

Now let us discuss the symmetry properties of (3.28). Consider the following 
transformation: 

q +. q-' hence R, + RI x,(.) --f xi(.) 
(3.32) 

Here in the lower indices we write values of the quantization parameter for the considered 
quantities. Note that using the symmetry property of the G L , ( N )  R-matrix 

s=2 + fir ez h2 = I  @ h , 

RL = PlzR,'Plz 

one can find that (3.32) is a product of two symmetries: the involution transformation of 
the operators B + PIZBPIZ and the discrete symmetry 

4 +. 4-' x9(.) +. xi(,) but Rq +. Ri l  

+ remains unchanged. 
(3.33) 

It must be stressed that the replacement q + q-' does not concern the definition of w, 
i.e. of the quantum trace. Otherwise, we would obtain an algebra with different covariance 
properties, namely, the algebra of left-invariant (w.r.t. transitions in underlying quantum 
group GL, (N) )  objects. 

Now using the identity 

we deduce the following properties of the matrix function ?(R): 
is@,) = R-'Z, (Ri') 

q i  
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and, then, it is easy to check that equation (3.28) is invariant under the substitution (3.33) 
and, therefore, under (3.32). In the classical limit q = 1 this transformation reduces to the 
identity, but in the quantum case we get the discrete Z~-group of symmetries of (3.28). 
Namely this symmetry produces the doubling of differential calculi on GL, (N)  observed 
by many authors (see, for example, [ 131). 

Thus, the most general form for the algebras which admit an ordering for any quadratic 
monomial in their generators is (3.28H3.30). The next step in finding out the consistent 
defining relations for homogeneous ACAs is to consider the ordering of cubic polynomials. 
Let us present the result of our considerations in a theorem. 

Theorem I. For general values of the quantization parameter q there exist four one- 
parametric families of homogeneous ACAs. The defining relations for the first pair of them 
look like 

A P Isaev and P N Pyatov 

~ f i ~ f i  + A R ~ ~ R - ’  = K9 (fi’ + ~ 6 % )  
(3.34) l 0 2  = 0 

and 

Qpe I: 6 w  = -PO6 P # O  (3.35) 

Qpe iI: [si, w]+ = o n  -2  O f O .  (3.36) 

For both cases the following remarkable relation holds: 
Here K~ = h N / ( [ N I q  + hq”), and q # -1, [NI, # (0, -hN, -h[21,qN*’, =Q2I9}. 

(3.37) 
-2 - ~n ~n - S~FIA’R = 0. 

The remaining pair of families can be obtained from the first one by the involution (3.32) 
or (393). 

Finally in the classical l i t  (q = I )  there exists one more family of homogeneous 
ACAS, namely 

[61, sid+ = r‘ (Pn - $) 0 pil + 62) 
[6, wl+ = 0 I d = O .  

(3.38) 

where r’ = r N / ( N 2  - 4) # 0 (see equations (3.27), (3.28)). 

Proof. We shall prove theorem 1 for type1 and typeiI algebras. The results for the second 
pair of algebras are obviously obtained by applying transformation (3.33) to all the formulae 
below. 

To check the ordering at a cubic level, it is enough to consider two monomials: 
(Rfi)20 and (R’Rfi)3. In the classical limit these combinations become Q+?]w and 
636&, respectively, and for the ordinary external algebra of invariant forms - - -  on G L ( N )  
the procedure of their ordering looks like 6 ~ 6 , ~  -+ 06162 and f$&fifi + QnzC23. 

Before establishing the quantum analogue of this procedure we have to choose the basis 
of ‘ordered’ cubic monomials. Here the notion ‘ordered’ is given in quotation-marks since 
we can’t achieve true lexicographic ordering of monomials without loosing the compact 
matrix form of our considerations and passing to cumbersome calculations in components 
Qj.  Such in-component calculations, based on the use of the diamond lemma (see [23]), 
were carried out for the case N = 2 in [9,10,16], and it seems doubtful that they could be 
repeated for general N .  So, we use the basis of quasi-ordered cubic combinations which 
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are convenient for our matrix manipulations. In this way, we cannot prove that we have 
exhausted all the possible types of ACAS, but the algebras obtained surely satisfy all the 
conditions for ACA and our conjecture is that theorem 1 gives all the possible ACAS. 

Let us define some new symbols: 

(A o B)lz = ARBR-I 

(A o B ) u  = RR'(A o B)12R'R 

(A)z = RAR 

( A  o B)13 = R'(A o B)12R' 

(A)] = A 
(A)3 = R'RARR' . 

Here, as usual, B z BI B @I I .  The lower indices in thise notation originate fiom the 
analogy with the classical case (q = I), where (A o B)lz = A I & ,  (A o B ) I ~  = A I  B3, etc. 

We choose the following basic set of cubic mahix combinations: 

( P o  f i ) i j  (fi 0 fiZ);, o(fi 0 fi), ( f i3 )  o(fi2); (3.39) 
where i < j and i, j = 1,2,3. We also imply that these basic combinations can be 
multiplied from the left by any matrix function f (R,  R'), but expressions produced from 
the combinations (3.39) by multiplication from the right are yet to be ordered. 

Now in the quantum case we order monomials (Rfi)'o and (R'Rfi)' in the following 
way: 

(Rf i )20  + -of iRf iR- '  + . . . 
(3.40) 

where we denote by . . . some additional terms to be expressed in terms of the basic 
combinations (3.39). The point is that such an ordering can be performed in two different 
ways, depending on whether we first permute the left pair of the generators, or the right one. 
According to condition (D) of section 3 both results must be identical, i.e. the additional 
terms in (3.40) calculated in two ways must coincide, otherwise the ordered cubic monomials 
would not be linearly independent. Checking this condition for the combination ( R f i ) 2 ~  
we get the following relation: 

(R'Rfi)3 + -fiRR'fiRR'-'fiR-'R'-' + . . . 1 

a [ ( f i o f i ~ ) 1 2  + ( f i O f i 2 ) 2 '  - p((fi20fi)12 t (c20fi)21)] 

= a i ( R )  [(I - p) (6  +qNR2)((fi3)1 + (fi3)2) t r@((fi2)1 + (fi2)2)] 

(3.41) 

( f i 2  fi)21 = R S ~  R S ~  (fi fi% = ~ f i ~ f i '  (3.42) 
are the combinations to be expressed in terms of the basic ones (3.39). In doing so one can 
start with the relation 

(3.43) 
that follows directly from (3.28). Here A+ is the shorthand notation for the r.h.s. of 
(3.28). Omitting the straightforward but rather tedious calculations we present the 'ordered' 
expressions for (fi2 o fi)21 and (fi o fi2)21 in appendix A (see equations (A.4)-(A.6)). 
Substituting (A.4), (AS) into (3.41) and carefully considering the conditions for vanishing 
consequently o(fi o fi)12, (h o fi2)12, (@ o h ) ~ ,  o(fi2)1,2 and (fi3)1,2-terms there we 
conclude that (3.41) is satisfied iff 

where 
- 2  - 

- 2  " RR RR - f i ~ f i ' ~  = R@A+ - ~ + f i ) ~  

(a) a = o  
@) u # O  and r = O , p = l  

(3.44) 
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Now we repeat these considerations for (R'Rfi)3. Performing the ordering of this 
expression in two different ways we obtain the following condition: 

A,R'RfiR-'R'-' - R'RfiRR'A, + R'AtR'RfiR-' 

- R ~ ~ R R ' A + R ' - ~  + R R ' A , R ' R ~ ~  - ~ ~ R R ' A + R ' - ~ R - ~  = 0 ,  (3.45) 

Considering (63)1,2,3-terms in the decomposition of (3.45) over the basic set (3.39) (here 
equations (A.4). (AS) are to be used) we get the condition on the parameter 8 

where [ N I ,  # -AqN is implied. Further restrictions on possible values of the 
quantization parameter q follow from the condition of invertibility of the matrix E(R)  
(see equation (A.6)), the inverse power of which enters, through the formulae (A.4), (AS), 
into all our calculations. These restrictions are 

K~ # 1 1 + K,R' j. Pi 0 [ N I ,  # 0 [NIq # -A[21qN*' . 
And finally, analysing the condition (3.45) for w ( 6  o 6)~2,13,~-terms we obtain further 
restrictions on parameters for case (a) (3.44), namely 

6 1 )  u = O  and r = O  
(a u=O and r # O , p = l A = O .  

Checking the remaining terms of (3.45) does not lead to further resbictions. 
Thus, we prove the ordering conditions For cubic monomials for the algebras (3.34)- 

(3.36), (3.38). To conclude the proof of the Theorem, we note that if the ordering condition 
is checked at a cubic level, then in accordance with the Manin's general remark [7], it 
automatically follows for all the higher power monomials. Finally, the relation (3.37) 

0 follows directly from (A.4), (AS) under the obtained restrictions on p. r ,  U ,  6 .  

To conclude this section, we make few comments about theorem 1: 

(1) The parameters U # 0 for the type-II algebra and i: # 0 for the non-standard classical 
algebra are inessential. They can be removed from the defining relations by simple rescaling 
of the generators w or il. 

(2) Note that by reproducing explicit formulae for certain ordering prescriptions from 
the covariant relations (3.34H3.36) and (3.38), one may obtain some additional limitations 
on the values of the parameters p,  U ,  r (e.g. see below the N = 2 case). 

(3) One can check directly the requirements (3.44) by assuming the following natural 
condition: 

Trq(e3) # 0 (3.47) 

(this is true, e.g., for the classical case q = 1). Then equations (3.27) lead to the relations 

Applying the operation Trq(.) to them and using (3.47), (3.22) we deduce 

u ( p  - 1) = 0 = TU 

which is equivalent to (3.44). 
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(4) From the relation (3.37) one can deduce that operators bZ commute as generators 
of the reflection equation algebra (see, for example, [24]) 

- 2  - 2  -2 - 2  RO R n  =n RR R 

(5) Finally, we present the defining relations for homogeneous ACAS in terms of the S2 
(see equation (3.18)) 

RnRR + C2RClR-' = K~ (R@R + R') 

(3.49) 

It should be mentioned that the condition p # 0 appears to be important just here, since the 
relations (3.49) for the type-I algebra contain both scalar terms only under this restriction. 

4. Differential complexes of invariant forms 

As we argued before, among the algebras presented in theorem 1 there exists the true algebra 
(or maybe a set of such algebras) of invariant differential forms on GL, (N) .  To make the 
connection with the differential calculi on quantum groups clearer, we shall supply the 
homogeneous ACAS listed in theorem 1 with a grade-1 nilpotent operator d of the external 
derivation. The definition of d must respect the covariance properties (3.1) of the Cartan 1- 
forms, i.e. d must commute with the adjoint GL,(N)-coaction on '2. Hence, the following 
general ansatz is allowed 

Here x, y, z and t are some parameters to be fixed below. We stress that the last term 
on the r.h.s. of (4.1) defines the deformed version of Leibnitz rules for differential forms. 
The ordinary Leibnitz rules are restored in the limit z = t = 1.  Note that the possibility of 
deformation of the Leibnitz rules has been discussed earlier by Faddeev (see, for example, 
~ 5 1 ) .  

Now the following theorem can be obtained straightforwardly. 

Theorem 2. 
complexes for type-I algebras, defined by 

Under the restrictions of theorem 1 there exist two distinct covariant differential 

d .  b =ob - zb . d  
d .  o = -U . d .  I Type IB: 

(4.2) 

(4.3) 

The differential complexes for type-I1 and the non-standard classical algebras are defined 
uniquely as 

(4.4) 
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Non-standard 
classical: 
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d .  6 = of2 - 6 d I d = -0 . d .  
(4.5) 

Here all inessential parameters are removed by o- and fi-rescalings. 

Proox These restrictions are easily obtained by demanding dz = 0 and checking the 
compatibility of ansatz (4.1) with the algebraic relations (3.34X3.36). We would like only 
to mention that the relation (3.37) plays an important role when elaborating the type-I and 
type-II cases. 0 

Let us discuss which of the differential complexes listed in theorem 2 can be treated 
as q-deformations of the complex of right-invariant forms on GL(N). Comparing 
equations (3.34H3.36) and (4.2H4.4) with the conventional classical relations 

16, 0]+ = [ f i l ,  621+ = 0 (4.6) 

we conclude that there are two different possibilities for deforming the complex of GL(N)- 
invariant differential forms. The first is realized by the typeIA differential complexes with 
the additional restriction on the parameter l i t+, l  p = 1. Note that in this case the Leibnitz 
rules are deformed under quantization (for p # 1). ?he second possibility is realized 
by the type-Il differential complexes with lin+l U = 0. Here the Leibnitz rules take 
their conventional form. We would like to mention that all the other types of differential 
complexes listed in theorem 2 also may be interesting as examples of 'exotic' differential 
complexes on GL(N) and GL, (N) ,  but this subject lies beyond the scope of the present 
paper. For N = 2 such 'exotic' complexes have been considered in 1161. 

Now let us treat the SL,(N)-case. The q-traceless generators 6i, can naturally be 
identified with the (N2- l)-diiensional basis of right-invariant 1-forms on SL,(N). These 
generators form a closed algebra under external multiplication given in theorem 1 (see 
equation (3.34)). and, remarkably, the algebra of these generators does not contain any 
random parameters. As theorem 2 states, the action of the external derivative on these 
generators can be only defined like in the classical case: d . fi = 6' - 6 . d (see 
equations (4.2), or (4.4)). So. we conclude that the complex of SL(N)-invariant differential 
forms possesses modulo the involution (3.33) the unique q-deformation. 

In the classical Liegroup theory the differential complex of invariant forms serves as 
suitable basis in the whole de-Rahm complex of all the differential forms on the group 
manifold. So, to get the full differential calculi on the linear quantum groups, we have to 
supply the algebras obtained with the suitable cross-multiplication rules for '& and Q i j ,  and 
to define additionally the action of the external derivative on Zj j .  Note that in Woronowicz's 
scheme [l]  these questions are to be solved in the first place, when constructing the first- 
order differential calculus. Not trying to solve the problem in general we present here one 
example of such construction, and establish the correspondence between homogeneos ACAS 
and the existing examples of GL,(N)-bicovariant differential calculi. 

For the matrix group GL, of a general rank N two versions of differential calculus have 
been considered. They were obtained first in the local coordinate representation, where the 
differential algebra is generated by the coordinate functions Z j ,  their differentials dGj.  
and derivatives Dtj (meaning &). We present here the full set of relations between such 
generators: 

d .  6 = 6' - 6. d d . w  = -0. d 

R TT' = TT' R R dTdT' = -dTdT'R-] RdTT' = T d f  R-' (4.7) 
R D'D = D'DR DRT = 1 + T'R-' D' DRdT = d r  R-' D' . (4.8) 
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Here, as usual, D = D @ I ,  D' = I @ D, dT = dT @ I ,  dT' = I @ d T .  This algebra is 
checked to possess unique ordering for any quadratic and cubic monomials. The relations 
(4.7) were obtained in [lo] and in the R-matrix formulation in [ 11,121. The first two of 
relations (4.8) have appeared in 114,151. Note that the algebra (4.7), (4.8) implies the 
commutativity of the derivatives D and external derivative d. The defining relations for the 
second version of differential calculus can be obtained from (4.7). (4.8) by the symmetry 
transformation R U R-' of the type (3.33). 

The right-invariant 1-forms and vector fields are then constructed as 

S2 = dT . T-' V = T . D  (4.9) 
and they possess the following algebra 

R 5 2 R T = T N  R V R T  = TV' + R T  (4.10) 

R 52 R 52 = - 52 R 52 R-' (4.1 1) 

R V R V = V R V R  + R V  - V R  (4.12) 

R 5 2 R V = V R f l R - '  + R52.  (4.13) 
Here equations (4.1 1) are the commonly used commutation relations for GL,(N)-invariant 
differential forms (see [12-151). Comparing (4.11) with (3.49) we see that the Q (4.9) 
realize the special case of type-II external algebra with U = -K,[N]~. Equations (4.12) are 
the well known commutation relations for GL,(N)-invariant vector fields [3-51, but in a 
slightly different notation. To obtain these relations in the conventional form, we have to 
pass to a new basis of generators Y = 1 - AV. In this basis equations (4.13). (4.12) look 
l i e  

R Y R Y = Y R Y R  (4.14) 

R ~ R Y = Y U ~ R - ~ .  (4.15) 
Note that ow commutation relations of the V with the Q or the Y (4.13). (4.15) are different 
from those presented in [13,15] for invariant 1-forms and Lie derivatives. 

The operator of external derivation in (4.7). (4.8) admits the following explicit 
representation 

(4.16) 
which surprisingly differs from the expected formula Tr,(dTD) = Tr,(QV). The operator 
(4.16) satisfies the nilpotence condition and the ordinary Leibnitz rules. The form of relation 
(4.16) suggests us an idea of changing the definition (4.9) of invariant vector fields. Indeed, 
consider the new set of generators Uij obtained from the old V by the non-linear invertible 
transformation 

d = Tr,'(QVY-') = Tr,(dTD(l -AV)- ' ) ,  

U V = -  V U=- 
I - A V  I + A U  ' 

(4.17) 

With a little algebra one can check that the commutation relations (4,lO). (4.12), (4.13) can 
be rewritten concisely in terms of the U 

R-'UR-'T=TU' + R-'T (4.18) 

R-'UR-'U=UR-'UR-' + R-'U - UR-'  (4.19) 

R52R-'U = U R n R  + R i l  . (4.20) 

Now, if we consider Uij instead of V, as invariant vector fields on GL, (N) ,  then the 
formula for external derivative takes its standard form: d = Tr,(QU). 
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Finally, let us consider the simplest case of GL9(2)-covariant differential calculus in 
more detail. Note that while the proof of theorem 1 does not work for N = 2. the resulting 
formulae are applicable to this case as well. This can be directly checked by using only the 
general properties of the matrix R, namely the Yang-Baxter equation, Hecke condition, and 
the q-trace formula. The failure of the general proof of theorem 1 is due to the different 
structure of Ada2 decomposition in the case N = 2 and is not fatal. 

Denote the components of matrix '2 as 

(:; 2 ) .  
Then from the covariant expressions (3.34x3.36) the following explicit ordering 
prescriptions can be extracted: 

Q p e  I: 8 2 -  - e2 3 -  - 0 836 = -8283 

Typen: 8 2 -  - 8' 3 -  - 0 8382 = -8283 

(4.22) 

1 - - "8384 + (" - 1 + 4-2)8183 1 
8483 = - 

1 - d l  + 4-21 I q2 
8281 = -U - /1)8182 + pe2s4 
8482 = -q2(1 - ")he4 + q2(p - 1 + q-2)81ez. 

"=  U o + [ N I 9  + [ N 1 q ~ 9  I N=2 

Here we use the parameter 

instead of a for convenience. In this notation the case (4.11) COKeSponds to p = 0. 
Obvious restrictions @ #  { 1, (1 + q-2)- ' }  and p # (-1, -q-', -q4] arise when passing 
from covariant relations to formulation in components (see the second remark to theorem 1). 
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Let us compare these results with those presented for the GL,,,(2) case in [16]. First, 
we note that by assumption the left-invariant 1-forms in [16] admit the decomposition 
Q = T-' . dT, and the external derivative satisfies the undeformed version of the Leibnitz 
rules. Hence, the formula d .  12 = -a2 - ' d is postulated. Moreover, the relation 
dQ - [a, Q], is also implied. Hence, the differential calculi obtained in [I61 must be of 
the second type. Indeed equations (8.5) of [161 can be transformed into the form (4.22) if 
we note that due to conditions (6.25) of [16] the parameter N (see equations (8.1)-(8.3) 
of [16]) obeys the following quadratic relation: 

(4.23) 
Here r = p q  (see equation (8.5) of [ 161) is the only combination of deformation parameters 
that enters into the external algebra of invariant forms. This is not surprising since the 
GL,.,(2) R-matrix, when suitably normalized. satisfies the Hecke relation 

(4.24) 

Hence, we expect that the parameter r 4 of [16] corresponds to our q-' (the inverse power 
here is due to the substitution q ++ q-I that should be done to pass from the right-invariant 
forms of (4.22) to the left-invariant ones). 

The variable s of (4.23) paramehizes different external algebras in [16] and it should 
correspond to our p .  Actually, using (4.23) it can be straightforwardly checked that 
equations (8.5) of [16] are equivalent to (4.22) when the following substitutions are made: 

(1 + r 2 ) ( 2 +  N ( 1  + r - (1 + 7')s)) = (1 + r  +rN)' . 

R2 = n + (r i  - r - i ) R .  

Summarizing the examples given above, we conclude that type-I1 differential complexes, 
on the one hand generalize the formulae given in [16] to arbitrary N and, on the other hand 
include as special cases the differential complexes used in [10-15] for construction of 
bicovariant calculi on the GL,(N) . 

5. Concluding remarks 

Here we make some comments on constructing the differential calculi for type-I1 complexes 
(3.34), (3.36). (4.4). and briefly discuss the problem of SL,(N)-reduction of the GL,(N)- 
differential calculi. 

Since all the type-I1 differential complexes are isomorphic (see the first remark to 
theorem l) ,  we expect that the U = -K,[N], case of the differential calculus (4.7). (4.8) 
can be transformed to the case of any U .  To realize this transformation, we consider the 
new set of generators {q7)] of the algebra Fun(GL,(N)) 

T'P' V = g(z)Tij (5.1) 
wherez = deb(T) and g(z) is an arbitrary function of z .  It is clear that deb(T(8)) = zg(z)N, 
and therefore the choice g(z) = z-'IN leads to the SL,(N)-case of [13,15]. Using the 
commutation relations (4.7) and (4.10) one can deduce that 

z d T  = q'dTz (5.2) 
Now we introduce new Cartan 1-forms Qg = dT(S)(Th))-l related to the old ones via the 
following formulae: 

hq"dT = [T, 01 + AqNdg(z) = o(g(q'z) - g(z)) . 
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Here G(z) = g(qzz)g-'(z). Note that equations (4.7) and (4.11) give the following 
formulae: 

(5.4) 
Using these equations and (4.7) and (4.11), we obtain the set of GL,(N)differential calculi 
parametrized by the function G(z) 

A P I s m  and P N Pyatov 

hq"dQ = -(a, W )  = Aq"Q' 

RT'~)T'~)' = T(s)T@)'R 

where 

Let us consider the case when the function G(z) is a constant. For example, for 
g(z) = za we have G(z) = qa and equations (55) give the one-parametric set of differential 
calculi which can be naturally related to the set of type-ll differential complexes (3.49) 

RT(~T(=)' = T(U)T(~)'R 

RQ(")RQ(") + Q(a)RQ(r)R-' = pL.(R(Q(m))2R + (Q(u))z) 

(5.8) 

Now let us explore the possibilities for SL,(N)-reduction of these calculi. First, if we 
put 01 = -1/N (as it was done in [13, U]), then in the commutation relations (5.8) we 
have the unavoidable additional I-form generator w(-' /m and, thus, the number of Cartan's 
1-forms is N2 but not NZ - 1 as in the undeformed case of S L ( N ) .  Second, one could try 
to set @tu) to zero, choosing parameters 01 and q as 

4 - w & )  = qatN t [aI,[Nl, = 0. (5.10) 

In particular, this equation is fulfilled when q is a root of unity: q-ZN = qu = q", which 
does not contradict the condition CY = -1jN. However, for the case of (5.10). in the thud 
equation of (5.8) we have %-indefiniteness, that is solved as 

qN-uo(a) (q"+N + [a],[N],)-' = w (5.11) 

and we cannot set it to zero, having in mind that hqNdT(*) = [Fa),  w]  and [deb T@), 01 # 
0. Therefore, the differential calculi (5.8) do not admit the correct SL,(N)-reduction even 
for special values of the quantization parameter q. 

Now, how one may hope to constsuct the consistent bicovariant differential calculus on 
SL,(N)? The nice way of making the reduction from the GL,(N)-case does not work for 
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type-11 differential calculi (5.8). It may be that the cross-multiplication presented in (5.8) is 
not the only possibility for constructing differential calculi starting with type-11 complexes. 
The difficulties might be overcome if we use the type-= complexes instead of the type4  
ones. But here for p # 1 we meet serious problems when constructing the local coordinate 
representation of the type SZ = dT . T-I. So, only the type-IA differential complex with 
p = 1 seems to be a good candidate for the construction of a consistent differential calculus 
on GL,(N) with its possible reduction to SL, (N) .  We hope to return to these problems in 
future publications. 

In conclusion we mention briefly the main results of this paper. The one-parametric 
sets of the quantum external algebras of Cartan 1-forms on GL, (N)  are constructed (see 
theorems 1 and 2). The type-II algebras are shown to be related with the known examples 
of the bicovariant differential calculi on GL, (N) .  It is observed that for arbitrary type-11 
algebra the corresponding bicovariant differential calculus can he obtained from the standard 
GL, (N)  differential calculus of [IC141 by shifting the generators S2 + S2 + c0nstant.o . 
The type I algebra for p = 1 (or the type-I1 algebra for U = 0) gives a good candidate 
for the extemal algebra of Cartan I-forms on S L , ( N ) ,  since in this case the scalar element 
o = Tr9(S2) is the central element of the algebra (see theorem 1). 

Appendix 

Here we present the ‘ordered’ expressions for quadratic combinations (fiofi2),,, (fi’ o f i h  
(see equation (3.42)), and collect some formulae used in the derivation of these expressions. 

Consider the sequence xi defined iteratively as 

xo = q N  + 4 - N  X I  = [NI, + hqN xi+? = + h~,+l . (A.l) 

Define 

where 1x1 = [ N  + 21,[N - 21,. It can be shown straightforwardly that yi ,k  = yi for any i 
and k ,  and yj are calculated by the following simple iteration: 

YO 1 YI = A yi+2 = yi + A Y ~ + I  . (A.3) 

When simplfying the final expressions for (6 o fi2)21 and (fi2 o f2)21 we use the following 
properties of the matrix functions x(R), i(R): 

R k X ( R )  = X k i  f Xk+fR R k i ( R )  = ~ (-’)’ (-xz-kd f X l - k R )  
Ix I 

R ~ ~ ~ ~ ( R )  = (-ilitk ( Y - i - r ~  - x l - k ~ l - i i ( ~ ) )  

together with (A.l)-(A.3). The result is 



2244 A P Isaes and P N Pyatov 

+ [ 8x1 ;;”x-’ R 2 (1 + R2i(R)) 

+ E R  ([NI4 + Aq”(1 + R2) + (1 + AZ)R6(R))t (fi3)1 

- 16x1 ;;””-’ RU + R~z(R)) + ; ( q ~ ( ~  + ~ 2 )  + X R ~ ( R ) )  ] ( i i 3 ) 2  

+ ( r i ( R ) c ( R )  (AR - 1x1 ) - -i$WR) 
8x0 + q”x-2 rpx3 

) 
+ iqN--R rp - I  F ( R ) )  U@)I + (-z~(R)c(R) (1 + 6x0 + q”x-2 

Ix I 1x1 

Ix I NTP 1x1 - I  1 1  (A.41 
v x 2  + - -E(R)+A~ -R F(R)  o ( f i 2 ) Z  

8x1 + 4NX-I 

Ix I 

- E (AqNR3 - X - ~ R  + R26(R))} (a o fiz)12 

) + W R ~  + R~M(R)P(R) + R ~ ~ ( R )  1 - i ( ~ p ( ~ ) + r u -  

(fi 0 f i ~ ) ? ~  = E - I ( R )  [ {R€[R) 

1x1 

x-2 + xo I (  Ix I 

-- I (ru)zR? Ix I (6’0 f2)12 - rR2 ( i ( R ) + p * R - ’ )  Ix I (€(R) + ruR2Z(R)) 

8x1 +q”X-I 3 
X d f i  0 E912 + [ 
- -(I (ruS Ix I + k ) R 2  1 ( f i3 ) l  - [“I  y-, RG(R) 

(so)’ + ruR - + -Rf(R)8(R) - AR- 

+ -R E(R)(-xz+(l+Az-x3~(R)R)G(R)) +ru(l+A*) 

+r i (R)  (t(R) (ru? + Rz) - AruR’i(R)) l ~ ( f i ~ ) ~  

+ - Rs(R) (XI + (xzR?(R) - h)6(R)) - hruR 

lx I R G(R) + ruR2 (2 + %I~(R)~(R)) lx I 

) 1x1 }(fi3)2 

x2 

(;I 1x1 

) I: ’( 

(3 ) 
+r2ui(R) (1x1 %(R) + R2i(R) )I ~ ( f i ~ ) ~  I . (A.3  
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Note that these expressions are significantly simplified under the restriction ru = 0. 
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Note added. Since the preprint version of this paper was published, several papers that treated related subjects 
have appeared. The quasiclassical limit of the Iype-II algebras (3.49) have been investigated in [XI. In 1271 one 
of the authors has constructed examples of the non.commutative geomemy with non-commutative connections and 
ewatures based on the special case (4.11) of lype-I1 algebras. In the latest to appear [281, the differential calculus 
on S L q ( N )  based on the type1 p = I external algebra has been constructed by means of the modification of the 
Leibnitr rule for the exterior derivative. 
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